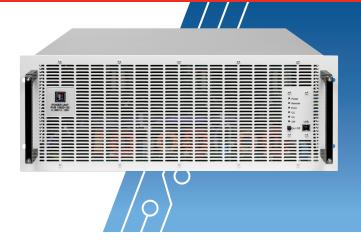


DATENBLATT


EA-PUB 10000 4U

Programmierbare bidirektionale DC-Stromversorgung

EA-PUB 10000 4U 30 KW

Programmierbare bidirektionale DC-Stromversorgung

Eigenschaften

- Weiteingangsbereich: 208 V 480 V, ±10%, 3ph AC
- Aktive Power-Faktor-Korrektur, typisch 0,99
- Bidirektionale Stromversorgung, Zwei-Quadranten mit Quelle und Senke
- Im Lastbetrieb regenerativ, mit Energierückspeisung ins Netz
- Sehr hoher Wirkungsgrad bis über 96%
- Hohe Performance mit 30 kW pro Einheit
- Spannung von 0 60 V bis 0 2000 V
- Strom von 0 40 A bis 0 1000 A

- Flexible, leistungsgeregelte DC-Ausgangs-/ Eingangsstufen (Autoranging)
- Regelmododus CV, CC, CP, CR mit schnellem Übergang
- Digitale Regelung, hohe Auflösung mit 16bit ADCs und DACs, Auswahl der Regelgeschwindigkeit: Normal, Schnell, Langsam
- Galvanisch isolierter Share-Bus für Parallelbetrieb aller Leistungsklassen in der 10000 Serie
- Master-Slave-Bus für Parallelbetrieb, bis zu 64 Geräte aller Leistungsklassen der 10000 Serie
- Befehlssprachen und Treiber: SCPI und ModBus, LabVIEW, IVI

Eingebaute Schnittstellen

- USB
- Ethernet
- Analog
- Master-Slave-Bus
- Share-Bus
- USB Frontplatte

Optionale Schnittstellen

- CAN
- CANopen
- RS232
- Profibus
- EtherCAT
- Profinet, mit einem oder zwei Ports
- Modbus, mit einem oder zwei Ports
- Ethernet, mit einem oder zwei Ports

Software

- EA-Power Control
- EA-Battery Simulator

Optionen

■ Wasserkühlung in Edelstahl

Technische Daten

Allgemeine Spezifikationen						
AC-Eingang						
Spannung, Phasen	380 V - 480 V ±10%, 3ph AC (208 V - 240 V ±10%, 3ph AC with derating to 18 kW)					
Frequenz	45 - 65 Hz					
Leistungsfaktor	ca. 0,99					
Ableitstrom	<10 mA					
Phasenstrom	≤56 A @ 400 V AC					
Überspannungskategorie	2					
DC-Ausgang statisch						
Lastausregelung CV	≤0,05% FS (0 - 100% Last, konstante AC-Eingangsspannung und konstante Temperatur)					
Netzausregelung CV	≤0,01% FS (208 V - 480 V AC ±10% Netzspannung, konstante Last und konstante Temperatur)					
Stabilität CV	≤0,02% FS (Über 8 Stunden nach 30 Minuten Aufwärmphase, konstante AC-Eingangsspannung und konstante Temperatur)					
Temperaturkoeffizient CV	≤30ppm/°C (Nach 30 Minuten Aufwärmphase)					
Fernfühlung (Remote Sense)	≤5% U _{Nenn}					
Lastausregelung CC	≤0,1% FS (0 - 100% Last, konstante AC-Eingangsspannung und konstante Temperatur)					
Netzausregelung CC	≤0,01% FS (208 V - 480 V AC ±10% Netzspannung, konstante Last und konstante Temperatur)					
Stabilität CC	≤0,02% FS (Über 8 Stunden nach 30 Minuten Aufwärmphase, konstante AC-Eingangsspannung und konstante Temperatur)					
Temperaturkoeffizient CC	≤50ppm/°C (Nach 30 Minuten Aufwärmphase)					
Lastausregelung CP	≤0,3% FS (0 - 100% Last, konstante AC-Eingangsspannung und konstante Temperatur)					
Lastausregelung CR	≤0,3% FS + 0,1% FS Strom (0 - 100% Last, konstante AC-Eingangsspannung und konstante Temperatur)					
Schutzfunktionen						
OVP	Überspannungschutz, einstellbar 0 - 110% U _{Nenn}					
OCP	Überstromschutz, einstellbar 0 - 110% I _{Nenn}					
OPP	Überleistungsschutz, einstellbar 0 - 110% P _{Nenn}					
OT	Übertemperaturschutz (DC-Ausgang schaltet ab bei unzureichender Kühlung)					
DC-Ausgang dynamisch						
Anstiegszeit 10 - 90% CV	≤10 ms					
Abfallzeit 90 - 10% CV	≤10 ms					
Anstiegszeit 10 - 90% CC	≤2 ms					
Abfallzeit 90 - 10% CC	≤2 ms					
Isolation						
AC-Eingang zum DC-Ausgang	3750 Vrms (1 Minute, Kriechstrecke >8 mm)					
AC-Eingang zum Gehäuse (PE)	2500 Vrms					
DC-Ausgang zum Gehäuse (PE)	Abhängig vom Modell, siehe Modeltabellen					
DC-Ausgang zu den Schnittstellen	1000 V DC (Modelle bis 360 V Nennspannung), 1500 V DC (Modelle ab 500 V Nennspannung)					
Digitale Schnittstellen						
Eingebaut, galvanisch isoliert	USB, Ethernet (100 MBit), USB Frontplatte, alle für Kommunikation					
Optional, galvanisch isoliert	CAN, CANopen, RS232, ModBus TCP, Profinet, Profibus, EtherCAT, Ethernet					

Allgemeine Spezifikationen						
Analoge Schnittstellen						
Eingebaut, galvanisch isoliert	15-polige D-Sub					
Signalbereich	0 - 10 V oder 0 - 5 V (umschaltbar)					
Eingänge	U, I, P, R, Fernsteuerung ein/aus, DC-Ausgang ein/aus, Widerstandsmodus ein/aus					
Ausgänge	Monitor U und I, Alarme, Referenzspannung, Status DC-Ausgang, CV/CC Regelungsart					
Genauigkeit U / I / P / R	0 - 10 V: ≤0,2%, 0 - 5 V: ≤0,4%					
Gerätekonfiguration						
Parallelbetrieb	Bis zu 64 Geräte aller Leistungsklassen der 10000 Serie ab 5 kW, mit Master-Slave-Bus und Share-Bus					
Sicherheit und EMV						
Sicherheit	EN 61010-1 IEC 61010-1 UL 61010-1 CSA C22.2 No 61010-1 BS EN 61010-1					
EMV	EN 55011, class A CISPR 11, class A FCC 47 CFR part 15B, unintentional radiator, class A EN 61326-1 inklusive Tests nach: - EN 61000-4-2 - EN 61000-4-3 - EN 61000-4-5 - EN 61000-4-6					
Sicherheitsschutzklasse	1					
Schutzart	IP20					
Umweltbedingungen						
Betriebstemperatur	0 - 50 °C					
Lagertemperatur	-20 - 70 °C					
Feuchtigkeit	≤80% relativ, nicht kondensierend					
Höhe	≤2000 m					
Verschmutzungsgrad	2					
Mechanische Konstruktion						
Kühlung	Forcierte Lüftung von vorn nach hinten (temperaturgesteuerte Lüfter), Option Wasserkühlung					
Abmessungen (B x H x T)	Gehäuse: 19" x 4HE x 668 mm					
Gewicht	50 kg					
Gewicht mit Wasserkühlung	56 kg					

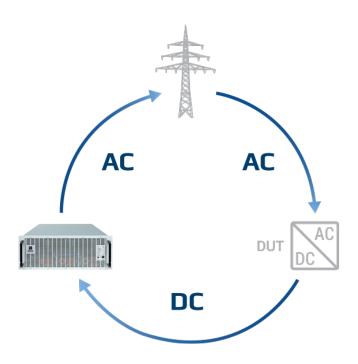
Technische Spezifikationen	PUB 10060-1000	PUB 10080-1000	PUB 10200-420	PUB 10360-240	PUB 10500-180
DC-Ausgang		•	•		
Nennspannungsbereich	0 - 60 V	0 - 80 V	0 - 200 V	0 - 360 V	0 - 500 V
Restwelligkeit in CV (rms)	≤25 mV (BW 300 kHz)	≤25 mV (BW 300 kHz)	≤40 mV (BW 300 kHz)	≤55 mV (BW 300 kHz)	≤70 mV (BW 300 kHz)
Restwelligkeit in CV (pp)	≤320 mV (BW 20 MHz)	≤320 mV (BW 20 MHz)	≤300 mV (BW 20 MHz)	≤320 mV (BW 20 MHz)	≤350 mV (BW 20 MHz)
U _{Min} für I _{Max} (Senke)	0,62 V	0,62 V	1,8 V	2,5 V	1,1 V
Nennstrombereich	0 - 1000 A	0 - 1000 A	0 - 420 A	0 - 240 A	0 - 180 A
Nennleistungsbereich	0 - 30000 W				
Nennwiderstandsbereich	0,003 Ω - 5 Ω	0,003 Ω - 5 Ω	0,0165 Ω - 25 Ω	0,05 Ω - 90 Ω	0,08 Ω - 170 Ω
Ausgangskapazität	25380 μF	25380 μF	5400 μF	1800 μF	675 µF
Wirkungsgrad Quelle/Senke (bis zu)	95,1% *1	95,5% *1	95,3% *1	95,8% *1	96,5% *1
Isolation					
Negativer DC-Pol <-> PE	±600 V DC	±600 V DC	±1000 V DC	±1000 V DC	±1500 V DC
Positiver DC-Pol <-> PE	+600 V DC	+600 V DC	+1000 V DC	+1000 V DC	+2000 V DC
Artikelnummern					
Standard	01123001	01123002	01123003	01123004	01123005
Standard + Wasserkühlung	01543001	01543002	01543003	01543004	01543005

^{*1} Bei 100% Leistung und 100% Ausgangsspannung

Technische Spezifikationen	PUB 10750-120	PUB 10920-125	PUB 11000-80	PUB 11500-60	PUB 12000-40
DC-Ausgang					
Nennspannungsbereich	0 - 750 V	0 - 920 V	0 - 1000 V	0 - 1500 V	0 - 2000 V
Restwelligkeit in CV (rms)	≤200 mV (BW 300 kHz)	≤250 mV (BW 300 kHz)	≤300 mV (BW 300 kHz)	≤400 mV (BW 300 kHz)	≤500 mV (BW 300 kHz)
Restwelligkeit in CV (pp)	≤800 mV (BW 20 MHz)	≤1200 mV (BW 20 MHz)	≤1600 mV (BW 20 MHz)	≤2400 mV (BW 20 MHz)	≤3000 mV (BW 20 MHz)
U _{Min} für I _{Max} (Senke)	1,2 V	2 V	3,4 V	3,2 V	3,7 V
Nennstrombereich	0 - 120 A	0 - 125 A	0 - 80 A	0 - 60 A	0 - 40 A
Nennleistungsbereich	0 - 30000 W				
Nennwiderstandsbereich	0,2 Ω - 370 Ω	0,25 Ω - 550 Ω	0,4 Ω - 650 Ω	0,8 Ω - 1500 Ω	1,7 Ω - 2700 Ω
Ausgangskapazität	450 μF	100 μF	200 μF	75 μF	50 μF
Wirkungsgrad Quelle/Senke (bis zu)	96,5% *1	96,5% *1	95,8% *1	96,5% *1	96,5% *1
Isolation					
Negativer DC-Pol <-> PE	±1500 V DC				
Positiver DC-Pol <-> PE	+2000 V DC				
Artikelnummern					
Standard	01123006	01123007	01123008	01123009	01123010
Standard + Wasserkühlung	01543006	01543007	01543008	01543009	01543010

^{*1} Bei 100% Leistung und 100% Ausgangsspannung

Allgemein


Die bidirektionalen DC-Laborstromversorgungen der Serie PUB 10000 von EA Elektro-Automatik sind Zwei-Quadranten-Geräte, die sowohl die Funktion einer Stromversorgung als auch die einer elektronischen Last übernehmen können. Im Lastbetrieb arbeiten die DC-Stromversorgungen regenerativ und speisen die Energie mit einem Wirkungsgrad bis über 96 % in das lokale Stromnetz zurück. Zur Serie PUB 10000 gehören dreiphasige Geräte, die mit ihrem weiten Eingangsbereich nahezu alle Netzspannungen weltweit bedienen können. Die DC-Spannungen und Ströme sind an Applikationen orientiert, das Spektrum reicht von 0 - 60 V bis 0 - 2000 V sowie von 0 - 40 A bis 0 - 1000 A in einem Gerät. Die DC-Stromversorgungen fungieren als flexible Ausgangsstufe mit einer konstanten Leistungscharakteristik, dem sogenanntem Autoranging, sowie einem großen Spannungs-, Strom- und Leistungsbereich. Um höhere Leistungen und Ströme zu realisieren, haben alle Geräte einen Master-Slave-Bus. Dieser ermöglicht mit 64 parallel geschalteten Geräten den Aufbau eines Systems, das bis zu 3840 kW und 64000 A zur Verfügung stellt. Dieses System arbeitet wie ein einzelnes Gerät und kann aus unterschiedlichen Leistungsklassen ab 5 kW bestehen, lediglich die Spannungsklasse muss übereinstimmen. So können Anwender ein 150 kW-System aus zwei 60 kW- und einem 30 kW-Gerät der Serie PUB 10000 aufbauen. Zudem stehen typische Funktionalitäten aus dem Laborbereich zur Verfügung. Dazu zählen ein Alarm- und Warnmanagement, verschiedene digitale Schnittstellen, Softwarelösungen und viele weitere Funktionen.

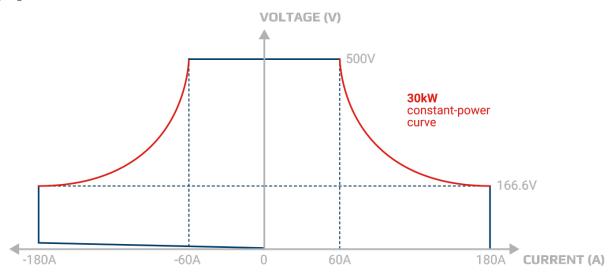
AC-Anschluß

Die bidirektionalen DC-Stromversorgungen der Serie PUB 10000 verfügen über eine aktive PFC, die für einen geringen Energieverbrauch bei hohem Wirkungsgrad sorgt. Darüber hinaus stellen die Geräte dieser Serie einen sehr großen Eingangsspannungsbereich bereit. Dieser reicht bei dreiphasigen AC-Netzen von 208 - 240 V und 380 - 480 V. Die Geräte können weltweit an den meisten Netzen betrieben werden. Sie passen sich automatisch – ohne weiteren Konfigurationsaufwand – dem jeweils vorhandenen Netz an. Beim dreiphasigen AC-Netz 208 - 240 V wird ein Derating der Ausgangsleistung eingestellt.

Netzrückspeisung

Die im Lastbetrieb aufgenommene Energie wird mit einem Wirkungsgrad bis über 96 % in das angeschlossene Netz zurückgespeist. Das senkt die Kosten: Da die Energie nicht wie bei herkömmlichen Lasten in Wärme umgewandelt wird, sinken die Energiekosten. Zudem produzieren die Geräte weniger Abwärme und müssen daher nicht kostenintensiv klimatisiert werden. Auch reicht ein Gerät für die verschiedene Anwendungen aus, so dass die Anschaffungs- und Anschlusskosten geringer ausfallen.

Prinzipdarstellung Netzrückspeisung


Diese Darstellung zeigt anhand einer Anwendung, wie das "Device under test" die aus dem Netz bezogene Energie in Gleichstrom umwandelt und an das Gerät von EA abgibt. Die bidirektionale Stromversorgung PUB 10000 wandelt diese Energie wiederum in AC-Strom um und speist sie zurück in das Netz.

DC-Ausgang

Der Ausgang der bidirektionalen Stromversorgungen PUB 10000 mit DC-Spannungen von 0 - 60 V bis 0 - 2000 V lässt positive und negative Ströme von 0 - 40 A bis 0 - 1000 A als 2-Quadranten-Gerät zu. Durch die flexible Ausgangsstufe, das sogenannte Autoranging, können Anwender einen großen Spannungs-, Strom- und Leistungsbereich und damit einen breiteren Arbeitsbereich als bei herkömmlichen Stromversorgungen nutzen.

DC-Anschluß

Der Anschluss des DC-Ausgangs ist über Kupferschienen auf der Rückseite des Geräts angebracht. Wird ein System mit hoher Leistung benötigt, werden die Geräte einfach parallelgeschaltet. Mit nur geringem Aufwand verbinden vertikal verlegte Kupferschienen die Geräte miteinander. Eine Abdeckung zum Berührungsschutz liegt bei.

Prinzipdarstellung Autoranging

"Autoranging" ist ein Begriff der beschreibt wenn ein bidirektionales programmierbares DC-Netzteil automatisch einen großen Ausgangs- und Eingangsbereich sowohl für Spannung als auch Strom bietet, um die volle Leistung über einen großen Betriebsbereich aufrechtzuerhalten. Diese Lösung ermöglicht die Verwendung einer einzigen Stromversorgung um mehrere Spannungs- und Stromkombinationen zu ermöglichen.

Schnittstellen

Standardmäßig sind Geräte von EA mit den wichtigsten digitalen und analogen Schnittstellen ausgestattet, die zudem galvanisch isoliert sind. Dazu gehören eine analoge Schnittstelle, die parametrierbare Ein- und Ausgänge mit 0 - 5 V oder 0 - 10 V für Spannung, Strom, Leistung und Widerstand besitzt, diverse funktionale Ein- und Ausgänge sowie jeweils eine USB- und Ethernet-Schnittstelle.

Folgende Optionen, die in einem Plug & Play-Slot ihren Platz finden, ergänzen das Portfolio:

- CAN
- CANopen
- RS232
- Profibus
- EtherCAT
- Profinet, mit einem oder zwei Ports
- Modbus, mit einem oder zwei Ports
- Ethernet, mit einem oder zwei Ports

Hochleistungssystem

Leistungsstarke Applikationen lassen sich mit Hochleistungssystemen bis zu 3840 kW realisieren. Um sie aufzubauen, werden die Ausgänge an den PUB 10000-Geräten durch vertikal verlegte Kupferschienen verbunden und parallelgeschaltet. So entsteht in einem 19"-Schrank mit 42 HE auf einer Fläche von nur 0,6 m² ein System mit 300 kW Leistung. Bei bis zu 13 Schränken mit insgesamt maximal 64 Einheiten je 60 kW sorgt der Master-Slave-Bus dafür, dass das System wie ein einzelnes Gerät funktioniert.

Master-Slave-Bus und Share-Bus

Verwendet man den integrierten Master-Slave-Bus und den Share-Bus, funktioniert ein Mehr-Geräte-System wie ein Gerät. Dafür sind Master-Slave- sowie Share-Bus auf einfache Weise von Gerät zu Gerät verbunden. Mit dem Master-Slave-Bus werden die Systemdaten, beispielsweise Gesamtleistung und Gesamtstrom, im Mastergerät zusammengeführt. Warnmeldungen und Alarme der Slave-Einheiten zeigt das Display übersichtlich an. Der Share-Bus sorgt für eine gleichmäßige Lastaufteilung der Ströme in den einzelnen Geräten.

Beispieldarstellung

In dieser Darstellung sehen sie ein komplett aufgebautes und verdrahtetes 240 kW System

Anwendungen

Batterietest für die Elektromobilität

Zu den typischen Anwendungen der bidirektionalen Stromversorgungen von EA Elektro-Automatik (EA) gehört das Testen der elektrischen Eigenschaften einer Batterie. Das breite Anwendungsspektrum umfasst Zell-, Modul- oder Packtests, die Bestimmung des SOH (State-Of-Health) für eine Second-Life-Klassifizierung sowie den End-Of-Line-Test (EOL). Die genannten Anwendungen stellen eine Vielzahl an Anforderungen an die Leistungselektronik, die von den PUB 10000-Stromversorgungen umfassend erfüllt werden. Die herausragenden Eigenschaften der Geräteserie sind: die Messbarkeit der Daten von Strom und Spannung in der erforderlichen Genauigkeit und Dynamik, die Reproduzierbarkeit und Reliabilität dieser Daten sowie die wirtschaftliche und flexible Nutzung. Ob in einem automatisierten Prüfsystem oder mittels integriertem Batterietest, den Anwendern stehen alle Anwendungsmöglichkeiten offen. Darüber hinaus erweisen sich die Geräte mit Wirkungsgraden bis über 96% als besonders wirtschaftlich.

Batteriesimulation

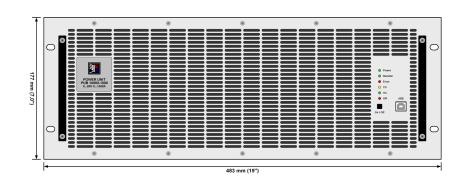
Zu den weiteren Anwendungen zählt die Simulation von Batterien als Einzelzelle, Modul oder im Pack. Mithilfe dieser Simulationen lassen sich sowohl der Energiespeicher als auch die Komponenten, die von diesem versorgt werden, optimal auslegen. Überall dort, wo reproduzierbare Daten notwendig sind, gilt das Arbeiten mit einem Batteriesimulator als erste Wahl. Zudem wirken bei der Nutzung des Simulators als Versorgungsquelle diverse Schutzmechanismen, die den angeschlossenen Verbraucher schützen. Über die Over-Current-Protection-Funktion (OCP) kann, wie bei einer Sicherung, der Ausgang abgeschaltet und ein Alarm generiert werden. Die Spannung lässt sich überwachen und kann beim Über- oder Unterschreiten einer Schwelle verschiedene Funktionen ausführen. Ebenso ist es möglich, Warnungen oder Alarme zu generieren. So sorgt eine Vielzahl an integrierten Funktionen für ein sicheres Arbeiten.

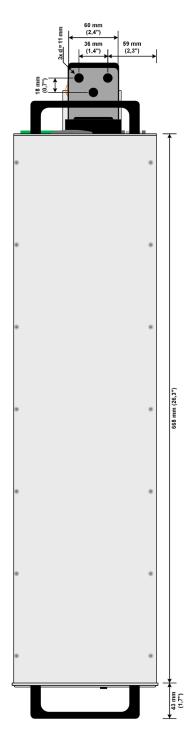
Brennstoffzellen Test

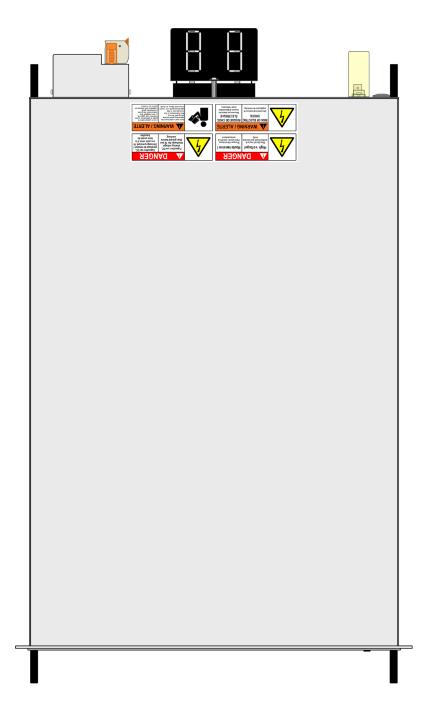
Die Geräte der Serie PUB 10000 werden zum Testen der elektrischen Eigenschaften von Brennstoffzellen, Brennstoffzellen-Stacks und Brennstoffzellen-Systemen eingesetzt. Dabei generieren sie hochgenaue und reproduzierbare Ergebnisse in allen elektrischen Modi. Um den Widerstand, die Leistung und die Lebensdauer einer Brennstoffzelle schnell und kostengünstig zu testen, können Anwender die Geräte auf einfache Weise in ein automatisches Testsystem integrieren. Die Rückspeisefähigkeit gewährleistet dabei einen höchst energie- und kosteneffizienten Einsatz. Werden höhere Ströme zum Testen kompletter Brennstoffzellen-Systeme benötigt, lassen sich die Geräte in einem Master-Slave-System parallelschalten. Auch hier bleibt die hohe Genauigkeit ebenso wie die Dynamik erhalten.

On-board-Charger Test

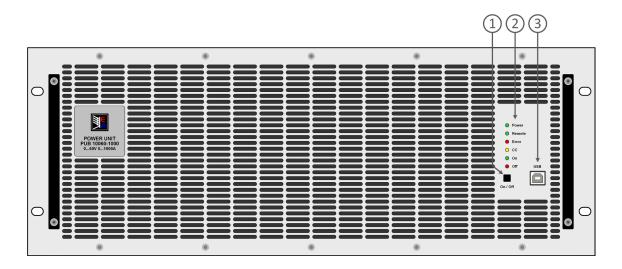
Bei einem On-Board-Charger (OBC) Test muss dieser auf seine elektrischen Eigenschaften unter verschiedenen Bedingungen geprüft werden. Hierzu wird ein flexibles Testsystem benötigt, das auch Messdaten bereitstellt. Mit der Sequencing- & Logging-Funktion können Testabläufe in die PUB 10000-Geräte geladen sowie Daten ausgelesen und gespeichert werden. So generieren Anwender in kürzester Zeit reproduzierbare Testergebnisse auf Basis dynamischer und hochgenauer Stell- und Messdaten. Um zu verhindern, dass sich beim Testen die zwei getrennten Regelkreise des Device-Under-Test (DUT) und des Prüfgeräts gegeneinander aufschwingen, ist die Regeldynamik der Stromversorgungen anpassbar: Über die drei Modi Normal, Schnell und Langsam lassen sich die PUB 10000-Geräte auf die Regeleigenschaften des On-Board-Chargers abstimmen.

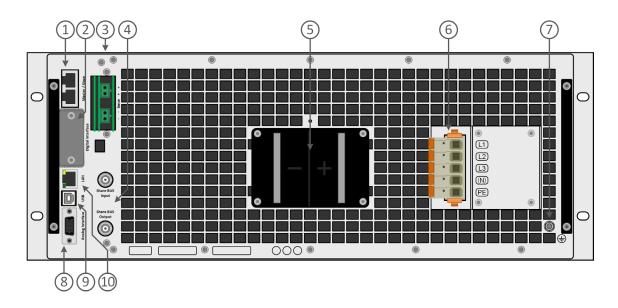

Solar-Array Simulation


Die programmierbaren Stromversorgungen der Serie PUB 10000 eignen sich hervorragend als Prüfsysteme für PV-Wechselrichter, da sie über die notwendige Simulationseinheit für Solarzellen verfügen. Anwender können ihre Simulationsmodelle nach EN 50530 oder Sandia schnell und einfach programmieren und die Eigenschaften unterschiedlichster Solarzellenmaterialien verwenden. Eine IU-Kurve lässt sich exakt nachbilden, Parameter wie Einstrahlung, Verschattungen, Temperatur, Wolken und Regen werden berücksichtigt. So prüfen die Geräte alle relevanten elektrischen Eigenschaften eines PV-Wechselrichters, inklusive der besonders wichtigen Bestimmung des Wirkungsgrads. Anwender können hier wahlweise ein statisches oder ein dynamisches Maximum-Power-Point-Tracking (MPPT) einsetzen. Dank der hochauflösenden 16-bit-Technologie und einer Abtastrate von 1µs liefern die programmierbaren Stromversorgungen exakte Ergebnisse, die dokumentiert und in einer Excel-Datei abspeichert werden können.

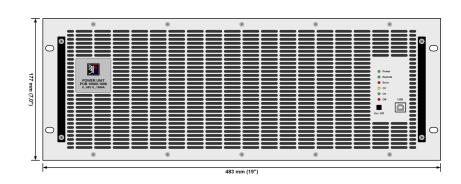

Batterierecycling

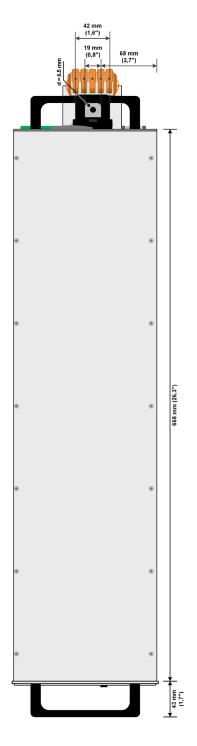
Mit den bidirektionalen Stromversorgungen der Serie PUB 10000 lassen sich ausrangierte Akkus aus Elektrofahrzeugen auf ihre mögliche Weiterverwendung prüfen. Bei der Charakterisierung des Batteriepacks wird zunächst der Akku auf seine Restkapazität (State-Of-Health) geprüft, um die Eignung für ein Second-Life festzustellen. Diese fest integrierte Funktion kann auf Knopfdruck abgerufen werden. Ergibt die Prüfung eine zu geringe Restkapazität, muss der Akku für das anschließende Recycling vollständig entladen werden. Dabei garantiert das echte Autoranging der Geräte die maximal mögliche restlose Entladung durch die hohen Lastströme, auch bei Spannungen unter 2 V. Dank der Netzrückspeisung der aufgenommenen Energie mit einem Wirkungsgrad bis über 96 % ist dieser Vorgang zudem sehr kosteneffizient.

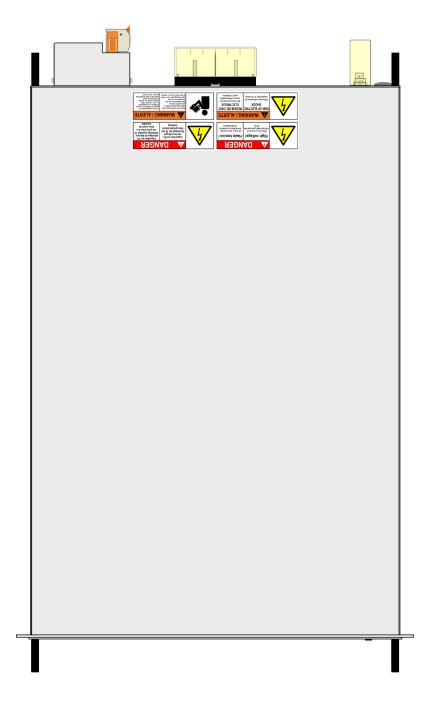

Technische Zeichnungen PUB 10000 4U ≤200 V



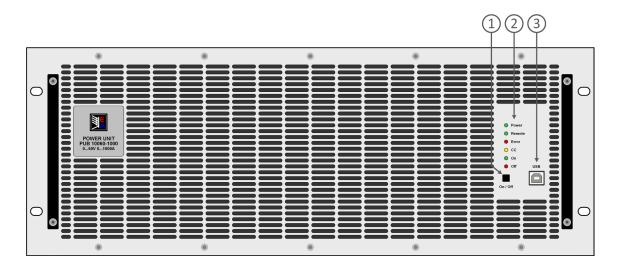
Beschreibung Frontplatte PUB 10000 4U

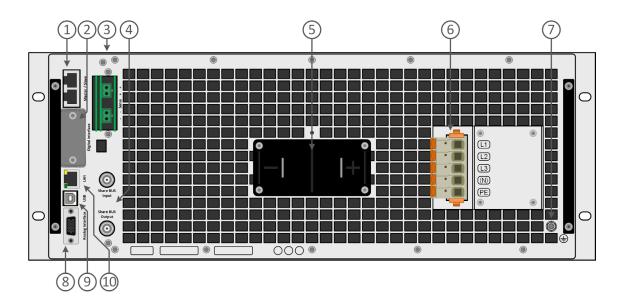

- 1. Ein / Aus Taster
- 2. LED Statusanzeigen
- 3. USB-Schnittstelle


Beschreibung Rückplatte PUB 10000 4U ≤200 V

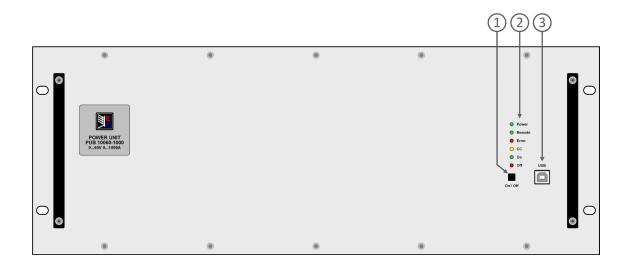


- 1. Master-Slave-Bus, Anschlüsse zum Einrichten eines Systems für Parallelschaltung
- 2. Steckplatz für optionale Schnittstellen
- 3. Eingangsklemmen für Fernfühlung der Ausgangsspannung (remote sense)
- 4. Share-Bus, Anschlüsse zum Einrichten eines Systems für Parallelschaltung
- 5. DC-Ausgangsklemme mit Kupfer-Anschlußschwertern
- 6. Netzeingangsbuchse
- 7. Anschlußschraube Erdverbindung (PE)
- 8. Anschlußstecker (DB15 weiblich) für isolierte Analogschnittstelle mit Programmierung, Auslesen und anderen Funktionen
- 9. USB-Schnittstelle
- 10. Ethernet-Schnittstelle

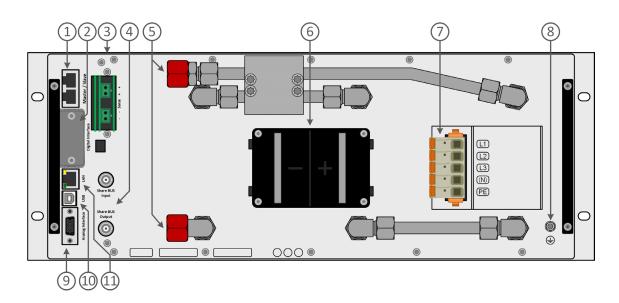

Technische Zeichnungen PUB 10000 4U ≥360 V



Beschreibung Frontplatte PUB 10000 4U


- 1. Ein / Aus Taster
- 2. LED Statusanzeigen
- 3. USB-Schnittstelle

Beschreibung Rückplatte PUB 10000 4U ≥360 V


- 1. Master-Slave-Bus-Anschlüsse zum Einrichten eines Systems für Parallelschaltung
- 2. Steckplatz für optionale Schnittstellen
- 3. Eingangsklemmen für Fernfühlung der Ausgangsspannung (remote sense)
- 4. Share-Bus-Anschlüsse zum Einrichten eines Systems für Parallelschaltung
- 5. DC-Ausngangsklemme mit Kupfer-Anschlußschwertern
- 6. Netzeingangsbuchse
- 7. Anschlußschraube Erdverbindung (PE)
- 8. Anschlußstecker (DB15 weiblich) für isolierte Analogschnittstelle mit Programmierung, Auslesen und anderen Funktionen
- 9. USB-Schnittstelle
- 10. Ethernet-Schnittstelle

Beschreibung Frontplatte PUB 10000 4U mit Option Wasserkühlung

- 1. Ein / Aus Taster
- 2. LED Statusanzeigen
- 3. USB-Schnittstelle

Beschreibung Rückplatte PUB 10000 4U mit Option Wasserkühlung

- 1. Master-Slave-Bus-Anschlüsse zum Einrichten eines Systems für Parallelschaltung
- 2. Steckplatz für optionale Schnittstellen
- 3. Eingangsklemmen für Fernfühlung der Ausgangsspannung (remote sense)
- 4. Share-Bus -Anschlüsse zum Einrichten eines Systems für Parallelschaltung
- 5. Ein- und Auslässe für Wasserkühlung
- 6. DC-Ausgangsklemme mit Kupfer-Anschlußschwertern
- 7. Netzeingangsbuchse
- 8. Anschlußschraube Erdverbindung (PE)
- 9. Anschlußstecker (DB15 weiblich) für isolierte Analogschnittstelle mit Programmierung, Auslesen und anderen Funktionen
- 10. USB-Schnittstelle
- 11. Ethernet-Schnittstelle

EA Elektro-Automatik GmbH & Co. KG Helmholtzstr. 31-37 41747 Viersen

Phone +49 2162 3785 - 0 Fax +49 2162 1623 - 0 ea1974@elektroautomatik.com

Caltest Instruments GmbH

Binzigstrasse 21 Tel: +49(0)7842-99722-00
D-77876 KAPPELRODECK Fax: +49(0)7842-99722-29
www.caltest.de info@caltest.de

